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1. Overview 
 
An increasing number of agent-based systems now operate in complex dynamic environments, 
such as disaster rescue missions, monitoring/surveillance tasks, enterprise integration, and 
education/training environments.  With this increasing population of available agents, we can 
expect another powerful trend:  the reuse of specialized agents as standardized building blocks 
for large-scale systems.  System designers can integrate these existing agents to construct new 
multi-agent systems capable of solving problems of greater complexity than those addressed by 
the individual agents themselves. 

Unfortunately, integrating agents to perform real-world tasks in a large-scale system remains 
difficult.  As part of DARPA’s Control of Agent-Based Systems (CoABS) program, our 
Teamcore project addressed this challenge of agent integration by focusing on general-purpose 
teamwork capabilities.  Based on successful applications of teamwork to closed multiagent 
systems, the key hypothesis behind Teamcore is that teamwork among agents can enhance robust 
execution even among heterogeneous agents in an open environment.  No matter how diverse the 
agents may be, if they act as team members, then we can expect them to act responsibly towards 
each other, to cover for each other’s execution failures, and to exchange key information. 

This report describes the five key contributions of our Teamcore project:   
1. Team-Oriented Programming (TOP): Our first contribution is the Teamcore 
architecture for agent integration.  It enables teamwork among agents with no coordination 
capabilities, and it establishes and automates consistent teamwork among agents with some 
coordination capabilities. Teamcore accomplishes this coordination by making each agent 
team-ready by providing it with a proxy capable of general teamwork reasoning.  Thus, a 
key novelty and strength of our framework is that powerful teamwork capabilities are built 
into its foundations by providing the proxies themselves with a teamwork model.  Given 
this teamwork model, the Teamcore proxies address the need for robust execution by 
automatically generating the required coordination actions for the agents they represent.  
Through team-oriented programming, a developer specifies a hierarchical organization and 
its goals and plans, abstracting away from coordination details.  Thus, team-oriented 
programming provides a level of abstraction that can be used on top of previous approaches 
to agent-oriented programming.  We used our Teamcore architecture to successfully address 
the challenges of agent integration in two application domains: simulated rehearsal of a 
military evacuation mission (the CoABS TIE 1) and facilitation of human collaboration (the 
Electric Elves).  
2. Electric Elves:  The second application domain of our Teamcore architecture, the 
Electric Elves, represents the first real-world, long-term deployment of a multi-agent 
system.  Since June 1, 2000, teams of software agents have aided researchers at USC/ISI in 
accomplishing their tasks, facilitating the organization’s coherent functioning and rapid 
response to crises, while reducing the burden on humans.  Tied to individual user 
workstations, fax machines, voice, mobile devices such as cell phones and palm pilots, the 
Electric Elves system has assisted us in routine tasks, such as rescheduling meetings, 
selecting presenters for research meetings, tracking people’s locations, organizing lunch 
meetings, etc.  
3. Adjustable Autonomy:  Central to the success of the Electric Elves system was our 
novel approach to adjustable autonomy in a team setting.  Adjustable autonomy refers to 
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agents’ dynamically varying their own autonomy, transferring decision-making control to 
other entities (typically human users) in key situations.  Previous work has provided several 
different techniques to address this question, but often focused on individual agent-human 
interactions.  Unfortunately, domains (like Electric Elves) requiring collaboration between 
teams of agents and humans reveal two key shortcomings of these previous techniques.  To 
remedy these problems, we devised a novel approach to adjustable autonomy, based on the 
notion of transfer of control strategy. A transfer of control strategy consists of a conditional 
sequence of two types of actions:  (i) actions to transfer decision-making control (e.g., from 
the agent to the user or vice versa) and (ii) actions to change an agent’s pre-specified 
coordination constraints with others, aimed at minimizing miscoordination costs.  The goal 
is for high-quality individual decisions to be made with minimal disruption to the 
coordination of the team.  We operationalized these strategies using Markov Decision 
Processes to select the optimal strategy given an uncertain environment and costs to 
individuals and teams.  
4. Monitoring Agent Teams:  Having deployed multi-agent systems in the CoABS Tie and 
in the Electric Elves, we then needed methods for on-line monitoring of such teams of 
cooperating agents, e.g., for visualization, or performance tracking.  However, in 
monitoring deployed teams, we often cannot rely on the agents to always communicate their 
state to the monitoring system.  We developed a non-intrusive approach to monitoring by 
overhearing, where the monitored team’s state is inferred (via plan recognition) from team-
members’ routine communications, exchanged as part of their coordinated task execution, 
and observed (overheard) by the monitoring system.  Key challenges in this approach 
include the demanding run-time requirements of monitoring, the scarceness of observations 
(increasing monitoring uncertainty), and the need to scale-up monitoring to address 
potentially large teams.  To address these challenges, we developed a set of complementary 
novel techniques that exploited knowledge of the social structures and procedures in the 
monitored team.  
5. Teamwork Theory:  In addition to our practical successes in multiagent teamwork, we 
also achieved fundamental breakthroughs at the theoretical level.  Despite the significant 
progress in multiagent teamwork, we found that existing teamwork research did not address 
the optimality of its prescriptions nor the complexity of the teamwork problem.  Without a 
characterization of the optimality-complexity tradeoffs, it is impossible to determine 
whether the assumptions and approximations made by a particular theory gain enough 
efficiency to justify the losses in overall performance.  To provide a tool for use by 
multiagent researchers in evaluating this tradeoff, we developed a unified framework, the 
COMmunicative Multiagent Team Decision Problem (COM-MTDP). The COM-MTDP 
model combines and extends existing multiagent theories, such as decentralized partially 
observable Markov decision processes and economic team theory.  In addition to their 
generality of representation, COM-MTDPs also support the analysis of both the optimality 
of team performance and the computational complexity of the agents’ decision problem.  In 
analyzing complexity, we derived breakdown of the computational complexity of 
constructing optimal teams under various classes of problem domains, along the dimensions 
of observability and communication cost.  In analyzing optimality, we exploited the COM-
MTDP’s ability to encode existing teamwork theories and models to encode two 
instantiations of joint intentions theory taken from the literature. Furthermore, the COM-
MTDP model provides a basis for the development of novel coordination algorithms.  We 
derived a domain-independent criterion for optimal communication and provided a 
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comparative analysis of the two joint intentions instantiations with respect to this optimal 
policy.  We have implemented a reusable, domain-independent software package based on 
COM-MTDPs to analyze teamwork coordination strategies, and we demonstrated its use by 
encoding and evaluating the two joint intentions strategies within an example domain.  

 
The following sections describe each of these contributions in order. 

2. Team-Oriented Programming 
 
Figure 1 shows the overall Teamcore framework for building agent organizations.  The 
numbered arrows show the typical stages of interactions in this system.  In stage 1, human 
developers interact with a team-oriented programming interface (TOPI) to specify a team-
oriented program, consisting of an organization and its team plans.  TOPI communicates this 
specification to KARMA, our Knowledgeable Agent Resources Manager Assistant, in stage 2. In 
stage 3, KARMA derives the requirements for roles in the organization, and searches for agents 
with relevant expertise (called domain agents in Figure 1). To this end, KARMA queries 
different middle agents, white pages (Agent Naming Service), etc.  Once it has located these 
domain agents, KARMA further assists a developer in assigning agents to organizational roles.   

 
Figure 1: Teamcore framework:  Teamcore proxies for heterogeneous domain agents. 
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Having thus fully defined a team-oriented program, the developer launches the Teamcore 
proxies that jointly execute the team plans of the team-oriented program.  To perform the 
coordination necessary for this execution, the proxies broadcast information among themselves 
via multiple broadcast nets (stage 4). The Teamcore proxies execute the team plans and, in the 
process, also generate specific requests and process the replies of their domain agents (stage 5). 
KARMA also eavesdrops on the various broadcasts to monitor the Teamcore proxies’ progress 
(stage 6), which it displays to the software developer for debugging purposes. All communication 
among Teamcore proxies, between a domain agent and its Teamcore proxy, and between a 
Teamcore proxy and KARMA currently occurs via the KQML agent communication language. 

Section 2.1 describes stage 1 in more detail.  The communication in stage 2 occurs via 
straightforward inter-process communication. Sections 2.2, 2.3, and 2.4 describe stages 3, 4, and 
5 in more detail.  We leave discussion of stage 6 to Section 5. Section 2.5 describes the 
application of the overall architecture to the CoABS TIE 1. 
 

2.1 Constructing Team Plans and Organization 
 
Because the Teamcore proxies automatically handle much of the necessary coordination among 
the agents executing the desired tasks, the developer can specify those tasks at a more convenient 
abstract level through team-oriented programming.  The developer specifies three key aspects of 
a team:  a team organization hierarchy, a hierarchy of reactive team plans, and assignments of 
agents to plans.  The team organization hierarchy consists of roles for individuals and for groups 
of agents. Using the CoABS TIE 1 mission rehearsal for illustration, Figure 2-a illustrates a 
portion of the organization hierarchy of the roles involved with the evacuation scenario 
(described in more detail in Section 2.5). Each leaf node corresponds to a role for an individual 
agent, while the internal nodes correspond to (sub)teams of these roles.  Task Force is thus the 
highest level team in this organization, while Orders-Obtainer is an individual role. 

 

 
 

 
Figure 2: Evacuation scenario:  (a) Partial organization hierarchy; (b) Partial plan  hierarchy. 
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The second aspect of team-oriented programming is specifying a hierarchy of reactive team 
plans.  While these reactive team plans are much like reactive plans for individual agents, the key 
difference is that the team plans explicitly express joint activities.  The reactive team plans 
require that the developer specify the:  (i) initiation conditions under which the plan is to be 
proposed; (ii) termination conditions under which the plan is to be ended, specifically, the 
conditions when the reactive team plan is achieved, irrelevant or unachievable; and (iii) team-
level actions to execute as part of the plan.  Figure 2-b shows an example from the evacuation 
scenario (please ignore the bracketed names for now). Here, high-level reactive team plans, such 
as Evacuate, typically decompose into other team plans, such as Process-orders (to interpret 
orders provided by a human commander). Process-orders is itself achieved via other sub-plans 
such as Obtain-orders. The precise detail of how to execute a leaf-level plan such as Obtain-
orders is left unspecified — thus both simplifying the specification, and allowing for the use of 
different agents to execute this plan.   

The software developer must also specify domain-specific plan-sequencing constraints on the 
execution of team plans.  In the example of Figure 2, the plan Landing-Zone-Maneuvers has 
two subplans:  Mask-Observe which involves observing the landing zone while hidden, and 
Pickup to pick people up from the landing zone. The developer must specify the domain-specific 
sequencing constraint that a subteam assigned to perform Pickup cannot do so until the other 
subteam assigned Mask-Observe has reached its observing locations.   

The third aspect of team-oriented programming is the assignment of agents to plans.  This is 
done by first assigning the roles in the organization hierarchy to plans and then assigning agents 
to roles. Assigning only abstract roles rather than actual agents to plans provides a useful level of 
abstraction:  new agents can be more quickly (re)assigned when needed.  Figure 2-b shows the 
assignment of roles to the reactive plan hierarchy for the evacuation domain (in brackets adjacent 
to the plans). For instance, Task Force team is assigned to jointly perform Evacuate, while the 
individual Orders-obtainer role is assigned to the leaf-level Obtain-orders plan.  Associated 
with such leaf-level plans are specifications of the requirements to perform the plan. For instance, 
for Obtain-orders, the requirement is to interact with a human.  A role inherits the requirements 
from each plan that it is assigned to.  Thus, the requirements of a role are the union of the 
requirements of all of its assigned plans. The assignment of agents to roles is discussed in the 
next subsection.   

The real key here is what is not specified in the team-oriented program: details of how to 
realize the coordination specified, e.g., how members of Task Force should jointly execute 
Evacuate. Thus, for instance, the developer does not have to program any synchronization 
actions, because the coherence preservation rules of the proxies’ Shell for Teamwork (STEAM) 
module generate them automatically, as described in Section 2.3. Thus, during execution, 
synchronization actions among members of Task Force are automatically enforced, both with 
respect to the time of plan execution and the identity of the plan (i.e., all members will choose the 
same plan out of a set of multiple candidates). Similarly, there is no need to specify the 
coordination actions for coherently terminating reactive team plans; the proxies automatically 
execute such actions in accordance with the STEAM rules.  Domain-specific plan-sequencing 
constraints, such as the one between Mask-Observe and Pickup discussed above, are also 
automatically enforced. 

Likewise, the developer does not have to specify how team members should cover for each 
other in case of failures; rather, the proxies use the STEAM rules for monitoring and repair to 
automatically replace fallen teammates. The team-oriented programming phase automatically 
generates the required capabilities for each role in the organization, as well as the capabilities of 
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each available agent.  If an agent should fail during execution, the proxies can follow the STEAM 
rules to automatically find any available replacements for each of its roles based on these 
capability requirements. 

Figure 3 shows a sample screenshot from TOPI used in programming the evacuation 
scenario, where the three panes correspond to the plan hierarchy (left pane), organization 
hierarchy (middle pane), and the domain agents (right pane). The left pane essentially reflects the 
diagram Figure 2-b, e.g., Task Force has been assigned to execute Evacuate. Associated with 
each entity are its properties, e.g., associated with each plan are its coordination constraints, 
preconditions, assigned subteam, and so on. 

 
Figure 3: TOPI snapshot from generating team-oriented program for the evacuation scenario. 

 

2.2 Searching and Assigning Agents 
 
As mentioned in the previous section, the team-oriented program assigns organizational roles to 
team plans.  KARMA, our Knowledgeable Agent Resources Manager Assistant, derives 
requirements for these individual roles in the organization based on this assignment.  KARMA 
searches for agents whose capabilities match these requirements.  By limiting the search for 
available agents to just the organizational requirements, KARMA avoids overwhelming the 
software developer with a list of all available agents. 

KARMA has multiple agent sources at its disposal:  middle agents, local white pages 
directories of known agents, and other registry services.  For instance, KARMA can query the 
AMatchMaker middle agent by sending it a KQML message specifying an advertisement 
template. AMatchMaker returns descriptions of those agents whose advertised capabilities match 
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the template.  In addition, KARMA can search its own database of previously used agents or the 
local white pages service.  KARMA is also interfaced with the agent registration and 
interconnection services provided by the CoABS Grid. 

Thus, from these different sources, KARMA compiles a list of relevant agents, and their 
properties, including address (host and port) and capabilities (some information, such as 
reliability, is available to KARMA from previous experience). From this list of relevant agents 
(in TOPI’s right pane in Figure 3), the developer can assign agents to the roles in the specified 
organization.  Once the developer has made an assignment, KARMA checks that the assignment 
is valid with respect to the plan requirements.  This check is done in three steps.  First, KARMA 
verifies that each agent has the capabilities required by its assigned role, where these 
requirements are derived from all of the role’s assigned plans.  Second, KARMA proceeds 
bottom-up through the team-plan hierarchy, recursively propagating the verification to the team 
operators as well.  Third, KARMA verifies that basic constraints of an organization hierarchy are 
maintained, e.g., a child is not assigned higher than its parent in the plan hierarchy.  The 
developer may also choose to allow KARMA to do the assignment automatically, which 
KARMA may do using a greedy approach, i.e., assigning to each role the first available agent 
that has all of the required capabilities.   
 

2.3 STEAM:  Making Heterogeneous Agents Team Ready 
 
Once the developer has used KARMA to fill in the required roles in the organization, the team-
oriented programming phase is complete, and the Teamcore proxies can begin execution of the 
team plans. To ensure robust execution, the Teamcore architecture transforms agents of all types 
into a set of consistent team players.  We achieve this team readiness among heterogeneous 
agents by providing each agent with a Teamcore proxy. The distributed Teamcore proxies, based 
on the Soar rule-based integrated agent architecture, execute their joint plans in a distributed 
fashion and coordinate as a team during this execution. 

Each proxy contains the STEAM domain-independent teamwork module, responsible for 
Teamcore’s teamwork reasoning.  The STEAM algorithm is specified in detail on-line: (http: 
//www.isi.edu/teamcore/COM-MTDP/).  We have implemented the algorithm using 
production rules in Soar. Implementations of the algorithm in other architectures are also 
possible. We can categorize the rules as providing three different types of high-level 
functionality, as discussed below:   

Coherence preserving rules require team members to communicate with each other to 
ensure coherent initiation and termination of team plans.  Coherent initiation ensures that all 
members of the team begin joint execution of the same team plan at the same time. 
Therefore, these rules prevent a helicopter from flying to its destination before all the other 
members of its flight team are ready to begin as well. Coherent termination requires that a 
team member inform others if it uncovers crucial information.  We define “crucial 
information” as any condition that indicates that the team plan is achieved, unachievable, or 
irrelevant.  For instance, the rules prescribe that anyone who is going to be late for a 
meeting must notify the other attendees, since the achievability of the meeting is now 
threatened.  
Monitor and repair rules ensure that team members make an effort to observe the 
performance of their teammates, in case any of them should fail.  If a critical team member 
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(or subteam) should fail, we ensure that a capable team member (or subteam) takes over the 
role of the failed agent.  For instance, the presenter at a research group meeting has a critical 
role with respect to the corresponding team plan, since without a presenter, the meeting will 
fail.  Therefore, these rules specify that the team should continuously monitor the 
presenter’s ability to fulfill this role.  If the presenter is unable to attend, these rules require 
that the team find some other capable team member to step in and give the presentation 
instead.  
Selectivity-in-communication rules use decision theory to weigh communication costs and 
benefits to avoid excessive communication in the team.  We thus ensure that the team 
performs coordination actions whose value in achieving coherent behavior outweighs the 
cost of communication. For instance, in the evacuation domain, communication is 
moderately expensive, due to the risk of enemy eavesdropping.  Therefore, these rules 
would prescribe communication only when there is a sufficiently high likelihood and cost of 
miscoordination (e.g., transport helicopters arriving at rendezvous point at a different time 
from their escorts). Communication is much less costly in the human collaboration domain; 
however, the likelihood of miscoordination is also much lower, since the human team 
members perform some coordination actions themselves.  For instance, the rules would not 
require communication to initiate a meeting plan, since all of the attendees have already 
entered the meeting into their calendar programs.  On the other hand, the rules do require 
communication if an attendee is unable to arrive on time, since the other attendees are 
unlikely to know this information without any communication.  

 
STEAM’s 300 Soar rules are available in the public domain and have proven successful in 
several different domains reported in the literature.  The novelty in the current work lies in the 
extensions to STEAM that enable the application of its rules to a much broader class of agents 
and problem domains. 
 

2.4 Teamcore’s Interface with Domain Agents 
 
In previous work, STEAM resided directly in the domain agent’s knowledge base, which is often 
difficult (if not impossible) to implement in an open, heterogeneous environment.  By placing 
STEAM’s teamwork knowledge (rules) in a separate Teamcore proxy, we no longer need to 
modify code in the domain agent.  However, the Teamcore proxy must now contain an interface 
module for communication with the domain agent, as illustrated in Figure 4. In particular, the 
STEAM rules enable the Teamcore proxies to automatically communicate with each other to 
maintain team coherence and recover from member failures.  In contrast, the interface module 
enables a Teamcore proxy to communicate with its domain agent, by translating the state of the 
team’s execution into individual tasks and monitoring requests. 
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Figure 4: Reasoning components of a Teamcore proxy and interactions with domain agent. 

 
The Teamcore proxy generates task requests according to the role assigned to its 

corresponding domain agent in the organization.  If the overall state of the team’s execution 
requires that a domain agent now perform a particular task, its Teamcore proxy generates the 
appropriate request message, based on the domain agent’s interface specification and the proxy’s 
knowledge of the state of the team plan.  The proxy’s adherence to the STEAM rules ensures that 
its beliefs about the state of the team plan agree with those of its teammates.  Thus, the proxy is 
sure that its domain agent will perform the requested task in synchronization with its teammates.  
The domain agent can then process the resulting task request, without necessarily being burdened 
with understanding the larger team context. 

The domain agent returns any result it may produce to its Teamcore proxy. The proxy may 
then communicate the result to its teammates, as mandated by STEAM’s coherence-preserving 
rules.  Again, the domain agent need not know anything about the overall team context.  In the 
case of a simple agent that provides responses to a fixed set of queries, it sees only a request from 
its Teamcore proxy that it processes and responds to, just as it would for any other individual 
client.  However, the result of the domain agent’s actions still produce the desired teamwide 
effects, since the Teamcore proxy forwards the result to those teammates to whom the new 
information is relevant. 
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The Teamcore proxies generate monitoring requests in a similar fashion, except that multiple 
team members may perform the same monitoring task without regard to any assigned roles within 
the organization.  Thus, multiple proxies may send requests to their corresponding domain agents 
for more robust monitoring. One key interesting issue in this architecture is that it is often the 
domain agent, and not the Teamcore proxy, that has access to information relevant to the 
achievement, irrelevance, and unachievability of the team plans (e.g., an information-gathering 
agent can search a database for known threats to a team of helicopters). Yet, only the Teamcore 
proxy knows the current team plans, so the domain agent may not know what observations are 
relevant (e.g., threats to the helicopters are relevant), necessitating communication about 
monitoring. For each team plan, the Teamcore proxies already maintain the termination 
conditions — conditions that make the team plan achieved, irrelevant, or unachievable.  Each 
Teamcore proxy also maintains a specification of what its domain agent can observe.  Thus, if a 
domain agent can observe conditions that reflect the achievement, irrelevance, or unachievability 
of a team plan, then the Teamcore proxy automatically requests it to monitor any change in those 
conditions.  The response from the domain agent may be communicated with other Teamcore 
proxies, through the usual STEAM procedures. 

The Teamcore proxies can similarly translate STEAM’s monitor and repair rules into 
appropriate messages for the domain agents.  For instance, in the human collaboration domain, 
each proxy monitors its user’s ability to attend the meeting on time, perhaps asking the user 
directly.  If the user responds that s/he is unable to attend, the proxy follows the STEAM rules 
and automatically forwards this information to the rest of the team.  If the user fills a critical role 
in the meeting plan (e.g., s/he is the presenter), then the team must repair the plan before 
proceeding.  The proxies, again following the STEAM rules, first determine whether their users 
have the capability of taking on the role, perhaps by asking directly.  Finally, the proxies follow 
the STEAM repair rules to fill the role with one of the users whom they determine to be capable 
and then notify the selected user. 

Thus, the overall interface between a Teamcore proxy and its domain-level agent performs 
the following three tasks:   

• If executing a team plan, α, which has termination conditions, send the conditions to the 
domain agent for monitoring  
• If executing an individual plan that results in a task, send the task to be performed by the 
domain agent  
• If the information sent by the domain agent matches the termination conditions of a team 
plan, use the STEAM algorithm.  

 

2.5 Application:  CoABS TIE 1 (Mission Rehearsal) 
 
In the evacuation domain, the goal is an integrated system for simulated mission rehearsal of the 
evacuation of civilians from a threatened location.  The system must enable a human commander 
to interactively provide locations of the stranded civilians, safe areas for evacuation, and other 
key points.  A set of simulated helicopters should fly a coordinated mission to evacuate the 
civilians.  The integrated system must plan routes to avoid known obstacles, dynamically obtain 
information about enemy threats, and change routes when needed.  The following agents were 
available:   



 

 

 

11

• Quickset:  (from P. Cohen et al., Oregon Graduate Institute) Multimodal command input 
agents [C++, Windows NT]  
• Route planner:  (from Sycara et al., Carnegie-Mellon University) Retsina path planner 
for aircraft [C++, Windows NT]  
• Ariadne:  (from Minton et al., USC Information Sciences Institute) Database engine for 
dynamic threats [Lisp, Unix]  
• Helicopter pilots:  (from Tambe, USC Information Sciences Institute) Pilot agents for 
simulated helicopters [Soar, Unix]  

 
Figure 5: ModSAF view of simulated helicopters. 
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Figure 6: Quickset view of evacuation scenario. 

As this list illustrates, the agents are developed by different research groups, they are written in 
different languages, they run on different operating systems, they may be distributed 
geographically (e.g., on machines at different universities), and they have no pre-existing 
teamwork capabilities. There are actually 11 agents overall, including the Ariadne, route-planner, 
Quickset, and eight different helicopters (some for transport, some for escort). These agents 
provided a fixed specification of possible communication and task capabilities.  Thus, the 
challenge in this domain lies in getting this diverse set of distributed agents to work together, 
without directly modifying the agents themselves. 

The Teamcore-based teams successfully met the challenge by generating correct task and 
monitoring requests, coordinating the domain-level agents’ behavior to successfully accomplish 
the evacuation scenario.  However, we are also interested in the effort involved in encoding and 
modifying agents’ teamwork capabilities — comparing the effort with Teamcore against the 
alternatives.  If we reproduced all of Teamcore’s capabilities by providing the domain-level 
agents with special-case coordination plans, we would then require an ability to modify the code 
of the domain-level agents.  In addition, we would also have to re-code the coordination plans in 
the languages used by each of the domain-level agents. 

A better alternative would use domain-specific wrapper agents, but each of the 18 team 
operators in Teamcore would still require separate domain-specific communication plans for 
coordination — two plans each to signal commitments (request and confirm) and one to signal 
termination of commitments.  Furthermore, reproducing Teamcore’s selective communication 
would require additional special cases.  In the extreme case, each combination of values for 
communication costs and rewards could require a separate special case operator (18×3× total 
combinations, already more than a hundred). Of course, we could economize all such special 
cases by discovering generalizations, but Teamcore already encodes such generalizations.   

The Teamcore specification greatly facilitated modifications to the team as well.  For 
instance, the route planner was the last addition to the team.  To extend the organizational 
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hierarchy, we simply added the route planner as a member of Big-Team and added the Process-
Routes branch of the goal hierarchy.  This branch involves very simple goals where the 
Teamcore agent submits a request for planning a particular route, waits for the reply by the route 
planner, and then communicates the new route to the other team members.  The Teamcore 
teamwork model already supported most of this communication.  Thus, the bulk of the coding 
effort for adding the route planner came in the specification of its message formats and task 
constraints. 

3. Electric Elves 
 
We have also applied Teamcore to assist human collaboration in our research team by automating 
many of our routine coordination tasks.  Here, the agents to be integrated are members of our 
research group. The proxies know their users’ scheduled meetings (by monitoring their 
calendars) and their whereabouts (e.g., whether they are working at their workstations). The 
Teamcore proxies must then assist in robust execution of team activities such as meetings.  For 
example, if a user is still working at his/her workstation at the time of the meeting (e.g., to finish 
a paper), others should be automatically informed of an appropriate meeting delay.  The overall 
system must also assign people to roles within team activities (e.g., selecting someone to give a 
presentation at a weekly research group meeting). 

This system faces the daunting challenges of the users’ heterogeneity (e.g., different 
presentation capabilities for different topics) and the larger scale of the team activities (e.g., each 
person is a member of multiple subgroups and has multiple meetings). In addition, the system 
cannot simply assign tasks for people, as it would the software agents of the evacuation domain.  
The system must also provide reliable communication with the users to perform these 
coordination tasks.  One interaction mechanism available is the use of dialog boxes on the user’s 
workstation display.  Within our research group, five members currently have PDAs or WAP-
enabled cellular phones that the system can also exploit for interactions.  In addition, the PDA 
can also provide location information if connected to a Global Positioning System (GPS) device 
(as in Figure 7). As a final means of communication, a proxy can send email to a project assistant 
or some other third party who can contact the user directly to pass on the message. 
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Figure 7: PDA (Palm VII) with GPS device for wireless, handheld communication between 

proxy and user. 

  
After an initial exploration, this domain evolved into the “Electric Elves” [15,1] and has been 

reported in the popular press as well (USA Today, http: //www.usatoday.com). 
 

3.1 Coordination of Component Agents 
 
The Electric Elves system spans a wide variety of component technologies and languages, 
communication protocols as well as operating system platforms.  Figure 8 shows the components 
of the current version of Electric Elves.  Teamcore agents are written in Python and Soar (which 
is written in C), Ariadne wrappers are written in C++, the PHOSPHORUS capability matcher is 
written in Common-Lisp and the PowerLoom interest matcher is written in STELLA which 
translates into Java.  The agents are distributed across SunOS 5.7, Windows NT, Windows 2000 
and Linux platforms, and use TCP/IP, HTTP and the Lockheed KQML API to handle specialized 
communication needs.  To solve the communication-level integration problem, we are using the 
CoABS Grid technology. 

The diverse agents in Electric Elves must work together to accomplish the complex tasks of 
the whole system.  For instance, to plan a lunch meeting, the interest matcher finds a list of 
potential attendees, the Friday of each potential attendee decides whether s/he will attend, the 
capability matcher identifies dietary restrictions of the confirmed attendees, and the reservation 
site wrapper identifies possible restaurants and makes the final reservation.  In addition to low-
level communication issues, there is the complicated problem of getting all these agents to work 
together as a team.  Each of these agents must execute its part in coordination with the others, so 
that it performs its tasks at the correct time and sends the results to the agents who need them. 
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Figure 8: Electric Elves System Architecture 

 
In Electric Elves, the agents coordinate using Teamcore. Each and every agent in the Electric 

Elves organization (Fridays, matchers, wrappers) has an associated Teamcore proxy that records 
its membership in various teams and active commitments made to these teams. Given an abstract 
specification of the organization and its plans, the Teamcore proxies automatically execute the 
necessary coordination tasks.  They form joint commitments to team plans such as holding 
meetings, hosting and meeting with visitors, arranging lunch, etc. Teamcore proxies also 
communicate amongst themselves to ensure coherent and robust plan execution.  The Teamcore 
proxies automatically substitute for missing roles (e.g., if the presenter is absent from the 
meeting) and inform each other of critical factors affecting a team plan.  Finally, they 
communicate with their corresponding agents to monitor the agents’ ability to fulfill 
commitments (e.g., asking Friday to monitor its user’s attendance of a meeting) and to inform the 
agents of changes to those commitments (e.g., notifying Friday of a meeting rescheduling). 
 

3.2 Agent Interactions with Human Users 
 
Electric Elves agents must often take actions on behalf of the human users.  Specifically, a user’s 
agent proxy (named “Friday” after Robinson Crusoe’s servant and companion) can take 
autonomous actions to coordinate collaborative activities (e.g., meetings). Friday’s decision 
making on behalf of a person naturally leads to the issue of adjustable autonomy. An agent has 
the option of acting with full autonomy (e.g., delaying a meeting, volunteering the user to give a 
presentation, ordering a meal). On the other hand, it may act without autonomy, instead asking its 
user what to do.  Clearly, the more decisions that Friday makes autonomously, the more time and 
effort it saves its user.  Yet, given the high uncertainty in Friday’s knowledge of its user’s state 
and preferences, it could potentially make very costly mistakes while acting autonomously.  For 
example, it may order an expensive dinner when the user is not hungry, or volunteer a busy user 
to give a presentation.  Thus, each Friday must make intelligent decisions about when to consult 
its user and when to act autonomously.  Section 4 describes our approach to adjustable autonomy 
in more detail. 
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Figure 9: Sample dialog box by which Friday asks for user input into meeting delay decisions. 

3.3 The E-Elves in Daily Use 
 
The E-Elves system was heavily used by ten users in a research group at ISI, between June 2000 
and December 2000.1  The Friday agents ran continuously, around the clock, seven days a week.  
The exact number of agents running varied over the period of execution, with usually five to ten 
Friday agents for individual users, a capability matcher (with proxy), and an interest matcher 
(with proxy). Occasionally, temporary Friday agents operated on behalf of special guests or other 
short-term visitors. 

The general effectiveness of the E-Elves is shown by several observations. During the E-
Elves’ operation, the group members exchanged very few email messages to announce meeting 
delays.  Instead, Fridays autonomously informed users of delays, thus reducing the overhead of 
waiting for delayed members.  Second, the overhead of sending emails to recruit and announce a 
presenter for research meetings was assumed by agent-run auctions.  Third, a web page, where 
Friday agents post their users’ location, was commonly used to avoid the overhead of trying to 
track users down manually.  Fourth, mobile devices kept users informed remotely of changes in 
their schedules, while also enabling them to remotely delay meetings, volunteer for presentations, 
order meals, etc.  Users began relying on Friday so heavily to order lunch that one local 
“Subway” restaurant owner even suggested:  “...more and more computers are getting to order 
food...so we might have to think about marketing to them!” 

                                                 
1The user base of the system was greatly reduced after this period due to personnel relocations 
and student graduations, but it remains in use to this date with a smaller number of users. 

■IFriday: TOPI-Ad jus table-Autonomy! 2: Delay Meetin| 

T0PI-Adjustable-Autonomy12:  Since you're not at the 
should I do any of the following? 

Delay meeting by 5 minutes, 
Delay meeting by 15 minutes. 
Delay meeting by 30 minutes. 
Delay meeting by 1   hour. 
Delay meeting by 2 hours, 
Delay meeting by  1   day, 
Say that you are now attending. 
Say that you will   attend later but start the meeting 
Say that you will   not attend. 
Cancel   the meeting. 

J No need to ask 

JK 



 

 

 

17

 
Figure 10: Number of daily coordination messages exchanged by proxies over a seven-month 

period. 

 
Figure 10 plots the number of daily messages exchanged by the Fridays over seven months 

(June through December, 2000). The size of the daily counts reflects the large amount of 
coordination necessary to manage various activities, while the high variability illustrates the 
dynamic nature of the domain (note the low periods during vacations and final exams). Figure 11 
illustrates the number of meetings monitored for each user.  Over the seven months, nearly 700 
meetings where monitored.  Some users had fewer than 20 meetings, while others had over 250. 
Most users had about 50% of their meetings delayed (this includes regularly scheduled meetings 
that were cancelled, for instance due to travel). Figure 12 shows that usually 50% or more of 
delayed meetings were autonomously delayed.  In this graph, repeated delays of a single meeting 
are counted only once.  The graphs show that the agents are acting autonomously in a large 
number of instances, but, equally importantly, humans are also often intervening, indicating the 
critical importance of adjustable autonomy in Friday agents. 
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Figure 11: Monitored vs. delayed meetings per user. 

 
Figure 12: Meetings delayed autonomously vs. by hand. 
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Figure 13: Sample screen shot from auction, used by Electric Elves to assign the presenter at a 

research group meeting. 

For the seven-month period, the presenter for USC/ISI’s Teamcore research group 
presentations was decided using auctions.  Table 1 shows a summary of the auction results.  
Column 1 (“Date”) shows the dates of the research presentations.  Column 2 (“No.  of Bids”) 
shows the total number of bids received before a decision.  A key feature is that auction decisions 
were made without all 9 users entering bids; in fact, in one case, only 4 bids were received.  
Column 3 (“Best bid”) shows the winning bid.  A winner typically bid <1,1>, i.e., indicating that 
the user it represents is both capable and willing to do the presentation — a high-quality bid.  
Interestingly, the winner on July 27 made a bid of <0,1>, i.e., not capable but willing.  The team 
was able to settle on a winner despite the bid not being the highest possible, illustrating its 
flexibility.  Finally, columns 4 (“Winner”) and 5 (“Method”) show the auction outcome.  An ‘H’ 
in column 5 indicates that the auction was decided by a human, an ‘A’ indicates it was decided 
autonomously.  In five of the seven auctions, a user was automatically selected to be presenter.  
The two manual assignments were due to exceptional circumstances in the group (e.g., a first-
time visitor), again illustrating the need for AA. 
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Date    No.  of bids   Best bid    Winner    Method  
Jul 6    7    1,1    Scerri    H 
Jul 20    9    1,1    Scerri    A  
Jul 27    7    0,1    Kulkarni    A  
Aug 3    8    1,1    Nair    A  
Aug 31    4    1,1    Tambe    A  
Sept 19    6    -,-    Visitor    H 
Oct 31    7    1,1    Tambe    A  

     
 

  
Table 1:  Results for auctioning research presentation slot. 

 

3.4 Travel Elves 
 
In the past, although the proxies worked together as a team, each individual proxy was itself a 
monolithic system with a fixed set of capabilities.  For greater flexibility (in terms of 
modification, technology transfer, etc.), we transformed each monolithic proxy into a multiagent 
team for the Travel Elves deployment.  Therefore, each user now has a team of lightweight 
agents serving his/her needs.  The composition of this team is now individualized to the user’s 
particular environment and needs.   

More specifically, Figure 14 illustrates the new proxy agent architecture, as deployed in the 
Travel Elves system.  The focal point of this proxy architecture is a Grid-based proxy agent.  This 
agent provides a point of contact for other Grid agents (e.g., the flight monitoring agent) that may 
wish to notify or query the user.  It maintains a record of any information specific to its 
individual user (e.g., full name, preferred devices). It also maintains a record of all of the other 
agents that are part of the proxy team.  As agents join and leave the proxy team, this Grid-based 
agent updates the proxy team’s registration and capability description within the Grid registry.  
Thus, all agents can look up a user’s proxy agent in the Grid registry to find out what interaction 
is possible with the particular user. 



 

 

 

21

 
Figure 14: Agent architecture for user proxy subteam as deployed in Travel Elves. 

In this deployment, the members of a user’s proxy team consist of individual device agents to 
handle interactions with the user over various media.  For example, if the user has a PDA, then 
the proxy team includes a specialized agent for interacting with this PDA. Likewise, a user with a 
SMS- or WAP-enabled cellular phone has a specialized agent in the proxy team for interacting 
through the device.  A user can dynamically create his/her communication team through a Web 
page, at which point, the appropriate device agents begin operation and coordination amongst 
themselves. 

In constructing these agents, we built on code that was part of the previously more ISI-
specific incarnation of our user proxies.  However, we extended the functionality by extracting 
the code (written in Python) and housing it in separate agents.  Each agent can communicate with 
the Grid proxy agent using the KQML agent communication language.  In addition, we 
generalized the operation of each agent so as to handle users who may be outside the ISI 
environment.  Finally, we created special device manager agents that supported the dynamic 
creation of the specialized device agents. The presence of these device manager agents allow 
users to seamlessly register and unregister their devices through a Web page, while automatically 
maintaining the necessary control over the pool of operating agents. 
 

The User 
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3.4.1 Email Agents 
 
The most popular medium for user notification is email.  Most users have an email account that 
they check regularly.  The email agents take any incoming messages for the user (in the form of a 
KQML message from the Grid-based proxy agent) and generate an appropriate email message to 
be sent through the mail server.  The user can also specialize the email agent with respect to the 
size of messages sent. For users who will be viewing their email on a PC or workstation monitor, 
their email agents will provide very detailed messages.  However, for users who wish to receive 
these emails on smaller, mobile devices (e.g., through SMS text messaging on a cellular phone), 
then their email agents will provide abbreviated content, so that the messages can still convey the 
necessary information within the restrictions of the display’s size. 
 

3.4.2 Palm Pilot Agents 
 
These agents allow users to interact with their agent proxies through mobile Palm Pilot devices 
with Internet access.  Unlike email, the Palm Pilot easily supports two-way communication with 
the user.  We modified our original Palm OS-based client application to support users outside of 
ISI. The result is a mobile application that serves messages to the user through HTML pages that 
are readable on even the small display of the Palm Pilot.  These pages provide the user with a 
history of current messages, as well as links to the contents of each message itself. 

Our Palm Pilot client application also provides direct access to some of the Travel Elves 
functionality.  For instance, a GPS device is connected to the Palm Pilot, a user can use the client 
application to generate a Grid query to the Ariadne restaurant finder agent with his/her specific 
latitude/longitude coordinates.  Thus, our Palm Pilot agent provides ubiquitous access to the 
Electric Elves’ functionality. 
 

3.4.3 Fax Agents 
 
These agents allow the agent proxies to communicate with their users through fax devices.  In 
other words, if the user has an available fax number, this device agent can translate Grid 
messages into fax content and then send the fax to the user’s number.  The user does not have to 
perform any special configuration of the fax machine to receive these faxes; the device agent 
performs all of the necessary translation to format the original Grid message and make it 
readable. 
 

3.4.4 HTML Agents 
 
These agents allow users to interact with their agent proxies through a standard Web browser.  
The operation is roughly the same as that of the Palm agent, except that the user can typically 
interact with this agent through a PC or workstation.  Thus, there is much more display room than 
with a Palm Pilot, allowing for more detailed messages. Furthermore, the user can interact with 
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this HTML agent through any Web browser on any machine anywhere. 
 

3.4.5 WAP Agents 
 
These agents allow users to interact with their agent proxies through a standard WML browser.  
The operation is roughly the same as that of the Palm and HTML agents, except that user 
typically interacts with this agent through a WAP-enabled cellular phone. 

 
Figure 15: WAP-enabled cellular phone for wireless communication between proxy and user. 

3.4.6 Speech Agents 
 
These agents use text-to-speech software to create an auditory channel for informing the users.  
The channel is necessarily one-way, in that the message is spoken out loud to inform the user, but 
no reply is expected in return.  This agent provides a “push” medium, in that the agent can 
transmit the message to the user immediately, without having to wait for the user to “pull” the 
information (e.g., by checking her/his email). 
 

3.4.7 Display Agents 
 
These agents use dialog boxes on the user’s workstation display to transmit messages.  The code 
for this display agent uses platform-independent code written in Python using the Tk widget set; 
thus, the user can run such agents on Windows, Unix, and Macintosh machines.  Like the speech 
agents, these display agents are more of a “push” medium, in that the agent can pop up dialog 
boxes that will inform the user, without her/his having to actively ask for the information. 
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3.4.8 Fax Server Agent 
 
The faxing device agents (described in Section 3.4.3) allow the Electric Elves agents to send 
faxes to the user.  In many cases, it is desirable for these agents to send faxes from a user to 
another entity.  For instance, in the flight monitoring task, when observing that a user’s flight has 
been delayed late into the night, it is desirable to notify the user’s hotel of the delay, so that the 
hotel holds the reservation until arrival.  The agents automate this notification by making use of a 
fax server agent, capable of generating outgoing faxes to arbitrary people (e.g., the hotel in this 
example). 
 

3.5 Travel Elves Deployment 
 
As already mentioned, we have deployed the agents described in this report for general use, and 
for particular use by program manager, Dylan Schmorrow.  Users can go to a registration Web 
page at http://www.isi.edu/teamcore/elves. Upon registering, a new Grid proxy is 
dynamically generated to handle all future interactions with the user.  To do so, we run a Grid 
agent that listens for such registration requests.  Upon receiving a request, it then starts up a new 
Grid proxy agent. This new agent then handles any future interactions with the user. 

As part of this deployment, the program manager, Dylan Schmorrow, successfully registered 
through our Web page and now has an agent proxy team operating on his behalf.  He registered 
an email device, so the team includes an email agent that will forward any notifications to the 
registered email account (which he can view on a mobile, Blackberry device). We have also 
provided him with a Palm Pilot, complete with our E-Elves Palm client application, and have 
started a corresponding Palm Pilot device agent. 

The notifications sent to the user’s proxy agent team come from other agents within the 
deployed Travel Elves system.  These other agents provide various flight monitoring services 
(e.g., observing a change in schedule, air fare, etc.). These agents are also now deployed, and 
operation is ongoing. 

As of this writing, there are 14 registered users, each with a Grid-based user proxy, and a total 
of 20 device agents.  We have recently announced the availability of E-Elves to the general 
population in the ISI Intelligent Systems Division, so we expect this number to grow (i.e., as we 
gain users outside the E-Elves researchers and CoABS managers themselves). To ease the 
administrative burden of maintaining this agent population, we have developed a Web-based 
“control panel” that provides an easy mechanism for monitoring and repairing all of the agents in 
our E-Elves team.  Figure 14 shows the interface, with the left-hand side panel listing the various 
functions supported. 
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Figure 16: Web-based interface for administration of Electric Elves user agents and device 
teams. 

  
 

4. Adjustable Autonomy 
 
A central problem in adjustable autonomy is to determine whether and when transfers of 
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decision-making control should occur.  A key challenge lies in the balance between two 
potentially conflicting goals.  On one hand, to ensure that the highest-quality decisions are made, 
an agent can transfer control to a human user (or another agent) whenever that user has superior 
decision-making expertise.  On the other hand, interrupting a user has high costs and the user 
may be unable to make and communicate a decision, so such transfers-of-control should be 
minimized.  Previous work has examined several different techniques that attempt to balance 
these two conflicting goals and to thus address the transfer-of-control problem. 

Our initial attempt at adjustable autonomy was inspired by Mitchell’s CAP, an agent system 
for advising a user on scheduling meetings.  As with CAP, each Friday tried to learn its user 
preferences using decision trees under Quinlan’s C4.5. One problem became apparent when 
applying this technique in Electric Elves: a user would not grant autonomy to Friday in making 
certain decisions, but s/he would sometimes be unavailable to provide any input at decision time. 
Thus, a Friday could end up waiting indefinitely for user input and miscoordinate with its 
teammates.  We therefore modified the system so that if a user did not respond within a fixed 
time limit, Friday acted autonomously based on its learned decision tree.  Unfortunately, when 
we deployed the system in our research group, it led to some dramatic failures.  For instance, one 
user’s proxy erroneously volunteered him to give a presentation.  C4.5 had overgeneralized from 
a few examples to create an incorrect rule.  Although Friday tried asking the user at first, because 
of the timeout, it had to eventually follow the incorrect rule and take the undesirable autonomous 
action. 

It was clear, based on this experience that the team context in Electric Elves would cause 
difficulties for existing adjustable-autonomy techniques that focused on solely individual human-
agent interactions. When applied to interacting teams of agents and humans, where interaction 
between an agent and a human affects the interaction with other entities, these previous 
techniques can lead to dramatic failures.  In particular, the presence of other entities as team 
members introduces an additional goal of maintaining coordination, which these previous 
techniques fail to address.  Failures occur for two reasons.  First, these previous techniques ignore 
team-related factors, such as costs to the team due to delays in decisions during such transfers of 
control.  Second (and more important), these techniques use one-shot transfers of control, rigidly 
committing to one of two choices:  (i) transfer control and wait for human input (choice H) or (ii) 
act autonomously (choice A). However, given interacting teams of agents and humans, both 
choices can lead to costly failures if the entity with control fails to make or report a decision in a 
way that maintains coordination.  On the other hand, forcing a less capable entity to make a 
decision simply to avoid miscoordination can lead to poor decisions with significant 
consequences. 
 

4.1 Transfer-of-control Strategies 
 
To address the shortcomings of previous adjustable autonomy work in such domains, we 
developed a model of transfer-of-control strategies. A transfer-of-control strategy consists of a 
planned, conditional sequence of two types of actions:  (i) actions to transfer decision-making 
control (e.g., from an agent to a user or vice versa); (ii) actions to change an agent’s pre-specified 
coordination constraints with team members, rearranging activities as needed (e.g., reordering 
tasks to buy time to make the decision). The agent executes such a strategy by performing the 
actions in order, transferring control to the specified entity and changing coordination as 
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required, until some point in time when the entity currently in control exercises that control and 
makes the decision.  Thus, the previous choices of H or A are just two of many different and 
possibly more complex transfer-of-control strategies.  For instance, an ADAH strategy implies 
that an agent A, initially attempts to make an autonomous decision.  If the agent, A, makes the 
decision, the strategy execution ends there.  However, there is a chance that it is unable to make 
the decision in a timely manner, perhaps because its computational resources are busy with 
higher priority tasks.  To avoid miscoordination, the agent executes a D action that changes the 
coordination constraints on the activity.  For example, a D action could inform other agents that 
the coordinated action will be delayed, thus incurring a cost of inconvenience to others, but also 
buying more time to make the decision.  If it still cannot make the decision, it will eventually take 
action H, transferring decision-making control to the user and waiting for a response.  In general, 
strategies can involve all available entities and contain many actions to change coordination 
constraints.  While such strategies may be useful in single-agent single-human settings, they are 
particularly critical in general multiagent settings. 

We have developed a decision-theoretic model of such strategies, that allows the expected 
utility of a strategy to be calculated and, hence, strategies to be compared.  A key adjustable 
autonomy problem lies in the selection of the best possible transfer-of-control strategy, i.e., one 
that provides the benefit of high-quality decisions without risking significant costs in interrupting 
the user and miscoordination with the team.  Furthermore, an agent must select the right strategy 
despite significant uncertainty. 

Markov decision processes (MDPs) are a natural choice for implementing such reasoning, 
because they explicitly represent costs, benefits and uncertainty as well as doing lookahead to 
examine the potential consequences of sequences of actions.  We conducted detailed experiments 
on MDP-based adjustable-autonomy reasoning used in E-Elves over the course of several 
months. For instance, as we varied the relative importance of central factors (e.g., cost of 
miscoordination), the resulting MDP policies varied in a desirable way (e.g., the agent made 
more decisions autonomously if the cost of transferring control to other entities increased). Other 
experiments reveal a phenomenon not reported before in the literature: an agent may act more 
autonomously when coordination change costs are either too low or too high, but in a ’middle’ 
range, the agent tends to act less autonomously. Despite the unpredictability of the user’s 
behavior and the agent’s limited sensing abilities, the MDPs in use within E-Elves consistently 
made sensible adjustable autonomy decisions.  Moreover, many times the agent performed 
several transfers of control to cope with contingencies such as a user not responding.  One lesson 
learned when actually deploying the system was that sometimes users wished to influence the 
adjustable autonomy reasoning, e.g., to ensure that control was transferred to them in particular 
circumstances.  To allow users to influence the adjustable autonomy reasoning, we introduced 
safety constraints that allow users to prevent agents from taking particular actions or ensuring 
that they do take particular actions.  These safety constraints provide guarantees on the behavior 
of the adjustable autonomy reasoning, making the basic approach more generally applicable and, 
in particular, making it more applicable to domains where mistakes have serious consequences. 
 

4.2 Evaluation of AA Strategies 
 
The most emphatic evidence of the success of the MDP approach is that, since replacing the C4.5 
implementation, the agents have never repeated any of the catastrophic mistakes made under that 
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earlier implementation.  For example, Friday avoids an earlier C4.5-based error where it selected 
several small, 5-minute delays instead of a single longer delay.  Under the MDP approach, Friday 
instead selects a strategy with a single, large D action, because it has a higher EU than a strategy 
with many small Ds (e.g., DDDD). Friday avoids an erroneous cancellation (which were 
observed under C4.5), because the large cost associated with an erroneous cancel action 
significantly penalizes the EU of a cancellation.  Friday instead chooses the higher-EU strategy 
that first transfers control to a user before taking such an action autonomously.  Friday avoids 
other errors observed under our initial implementation by selecting strategies in a situation-
sensitive manner.  For instance, if the agent’s decision-making quality is low (i.e., high risk), then 
the agent can perform a coordination-change action to allow more time for user response or for 
the agent itself to get more information. This indicates that a reasonably appropriate strategy was 
chosen in each situation.  Although the current agents do occasionally make mistakes, these 
errors are typically on the order of transferring control to the user a few minutes earlier than may 
be necessary.  Thus, the agents’ decisions have been reasonable, though not always optimal.  The 
inherent subjectivity in user feedback makes a determination of optimality difficult. 
 

5. Monitoring Agent Teams 
 
Recent years have seen tremendous growth of applications involving distributed multi-agent 
teams, formed of agents that collaborate on a specific joint task, including the two domains of 
Teamcore’s application described here.  This growth has led to increasing need for monitoring 
techniques that allow a synthetic agent or human operator to monitor and identify the state of the 
distributed team.  Researchers have already identified the critical role of monitoring in 
visualization, in identifying failures in execution, in providing advice to improve performance, 
and in facilitating collaboration between the monitoring agent and the members of the team.   

Motivated by the difficulties in monitoring the distributed agents in TIE 1 and in Electric 
Elves, we focused on monitoring cooperative agent teams by overhearing their internal 
communications.  This allows a human operator or a synthetic agent to monitor the coordinated 
execution of a task, by listening to the messages team-members exchange with each other.  It 
contrasts with previous techniques that are impractical in settings where direct observations of 
the team members are unavailable (e.g., when an observer at ISI in California wishes to monitor 
agents running TIE 1 at Global Infotek in D.C.), or in large-scale applications composed of 
already-deployed agents that are dynamically integrated to jointly execute a task. 

For example, one common technique, report-based monitoring, requires each monitored 
team-member to communicate its state to the monitoring agent at regular intervals, or at least 
whenever the team-member changes its state.  Such reporting provides the monitoring agent with 
accurate information on the state of the team.  Unfortunately, report-based monitoring suffers 
from several difficulties in monitoring large deployed teams of interest in the real-world:  First, it 
requires intrusive modifications to the behavior of agents, such that they report their state as 
needed by the different monitoring applications.  However, since agents are already deployed, 
such repeated modifications to the behavior of the agents are difficult to implement and complex 
to manage.  In particular, legacy and proprietary systems are notoriously expensive to modify 
(e.g., the notorious modifications to address Y2K bugs). Second, the bandwidth requirements of 
report-based monitoring (which relies on communication channels) can be unrealistic, as other 
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researchers have repeatedly pointed out.  In addition, network delays and unreliable or lossy 
communication channels are a key concern with report-based monitoring approaches. 

We therefore advocate an alternative monitoring approach, based on multi-agent keyhole 
plan-recognition, which has already had limited success in monitoring small-scale multiagent 
systems. In this approach, the monitoring system (deployed by the human operator of the team) 
infers the unobservable state of the agents based on their observable actions, using knowledge of 
the plans that give rise to the actions.  This approach is non-intrusive, requiring no changes to 
agents’ behaviors; and it allows for changes in the requested monitoring information.  It assumes 
access to knowledge of plans that may explain observable actions—however this knowledge is 
readily available to the monitoring system as it is deployed by the human operator of the team.  
Furthermore, a plan-recognition approach can rely on inference to compensate for occasional 
communication losses, and can therefore be robust to communication failures.   

In general, the only observable actions of agents in a distributed team are their routine 
communications, which the agents exchange as part of task execution.  Fortunately, the growing 
popularity of general-purpose agent-integration tools and increased standardization of aspects of 
agent communications provide increasing opportunities for observing and interpreting inter-agent 
communications.  We assume that monitored agents are truthful in their messages, since they are 
communicating to their teammates; and that they are not attempting to deceive the monitoring 
agent or prevent it from overhearing (as it is deployed by the human operator of the team). Given 
a (possibly stochastic) model of the plans that the agents may be executing, a monitoring system 
using plan-recognition can infer the current state of the agents from such observed routine 
messages.   

However, the application of plan-recognition techniques for overhearing poses significant 
challenges.  First, a key characteristic of the overhearing task is the scarcity of observations.  
Explanations for overheard messages (i.e., the observed actions) can sometimes be fairly easy to 
disambiguate, but uncertainty arises because there are relatively few of them to observe:  team 
members cannot and do not in practice continuously communicate among themselves about their 
state. Thus team-members change their state while keeping quiet.  Another key characteristic of 
overhearing is that the observable actions are inherently multi-agent actions:  When agents 
communicate, it is only a single agent that sends the messages.  The others implicitly act their 
role in the communications by listening. Yet despite the scarcity of observable communications, 
and the multi-agent nature of the observed actions, a monitoring system must infer the state of all 
agents in the team, at all times.  Previous investigations of multi-agent plan-recognition have 
typically made the assumption that all changes to the state of agents have an observable effect:  
Uncertainty resulted from ambiguity in the explanations for the observed actions.  Furthermore, 
these investigations have addressed settings where observable actions were individual:  Each 
agent was observed while acting. 

In addition to these challenges that are unique to overhearing, a monitoring system must 
address additional challenges stemming from the use of monitoring in service of visualization.  
The representation and algorithms must support soft real-time response; reasoning must be done 
quickly to be useful for visualization.  Furthermore, real-world applications demand techniques 
that can scale up as the number of agents increases, for monitoring large teams.  However, many 
current representations for plan-recognition are computationally intense (e.g., dynamic Bayesian 
networks), or only address single-agent recognition tasks.  Multi-agent plan-recognition 
investigations have typically not explicitly addressed scalability concerns. 

To address these novel issues, we developed and implemented OVERSEER, which is capable 
of monitoring large distributed applications composed of previously-deployed agents.  OVERSEER 



 

 

 

30

builds on previous work in multi-agent plan-recognition by utilizing knowledge of the 
relationships between agents to understand how their decisions interact.  However, as previous 
techniques proved insufficient, OVERSEER includes a number of novel multi-agent plan-
recognition techniques that address the scarcity of observations, as well as the severe response-
time and scale-up requirements imposed by realistic applications.  Key contributions include:  (i) 
a linear time probabilistic plan-recognition representation and associated algorithms, which 
exploit the nature of observed communications for efficiency; (ii) a method for addressing 
unavailable observations by exploiting knowledge of the social procedures of teams to 
effectively predict (and hence effectively monitor) future observations during normal and failed 
execution, thus allowing inference from lack of such observations; and (iii) YOYO*, an 
algorithm that uses knowledge of the team organizational structure (team-hierarchy) to model the 
agent team (with all the different parallel activities taken by individual agents) using a single 
structure, instead of modeling each agent individually.  YOYO* sacrifices some expressivity (the 
ability to accurately monitor the team in certain coordination failure states) for significant gains 
in efficiency and scalability.   

We performed a rigorous evaluation of OVERSEER’s different monitoring techniques using the 
CoABS TIE 1 as a testbed domain and showed that our techniques result in significant boosts to 
OVERSEER’s monitoring accuracy and efficiency, beyond techniques explored in previous work.  
We evaluated OVERSEER’s capability to address lossy observations, a key concern with report-
based monitoring.  Furthermore, we evaluated OVERSEER’s performance in comparison with 
human expert and novice monitors, and showed that OVERSEER’s performance is comparable to 
that of human experts, despite the difficulty of the task, and OVERSEER’s reliance on 
computationally-simple techniques.  One of the key lessons that we draw in OVERSEER is that a 
combination of computationally-cheap multi-agent plan-recognition techniques, exploiting 
knowledge of the expected structures and interactions among team-members, can be competitive 
with approaches which focus on accurate modeling of individual agents (and may be 
computationally expensive). 
 

6. Teamwork Theory 
 
Our work on determining optimal strategies for adjustable autonomy led us to further examine 
our teamwork-based integration architecture.  Research in teamwork theory has built the 
foundations for successful practical agent team implementations, including our own Teamcore 
architecture.  On the forefront are theories based on belief-desire-intentions (BDI) frameworks 
(e.g., joint intentions, SharedPlans, and others) that have provided prescriptions for coordination 
in practical systems.  These theories have inspired the construction of practical, domain-
independent teamwork models and architectures (including STEAM and Teamcore), successfully 
applied in a range of complex domains. 

Yet, two key shortcomings limit the scalability of these BDI-based theories and 
implementations.  First, there are no techniques for the quantitative evaluation of the degree of 
optimality of their coordination behavior. While optimal coordination may be impractical in real-
world domains, such analysis would aid us in comparison of different theories/models and in 
identifying feasible improvements.  One key reason for the difficulty in quantitative evaluation of 
most existing teamwork theories is that they ignore the various uncertainties and costs in real-
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world environments.  For instance, joint intentions theory prescribes that team members attain 
mutual beliefs in key circumstances, but it ignores the cost of attaining mutual belief (e.g., via 
communication). Implementations that blindly follow such prescriptions could engage in highly 
suboptimal coordination.  On the other hand, practical systems have addressed costs and 
uncertainties of real-world environments.  For instance, STEAM extends joint intentions with 
decision-theoretic communication selectivity.  Unfortunately, the very pragmatism of such 
approaches often necessarily leads to a lack of theoretical rigor, so it remains unanswered 
whether STEAM’s selectivity is the best an agent can do, or whether it is even necessary at all.  
The second key shortcoming of existing teamwork research is the lack of a characterization of the 
computational complexity of various aspects of teamwork decisions.  Understanding the 
computational advantages of a practical coordination prescription could potentially justify the use 
of that prescription as an approximation to optimality in particular domains. 

To address these shortcomings, we propose a new complementary framework, the 
COMmunicative Multiagent Team Decision Problem (COM-MTDP), inspired by work in 
economic team theory. As in that framework, our definition of a team assumes only a common 
goal (i.e., a joint utility function). Unlike typical teamwork frameworks, we make no other 
assumptions about the team’s behavior (e.g., the teammates form a joint commitment, 
communicate to attain mutual belief, etc.). We view these more intermediate concepts as the 
means by which agents improve their overall performance, not ends in themselves.  For example, 
while mutual belief has no inherent value, our COM-MTDP model can quantify the improved 
performance that we would expect from a team that attains mutual belief about important aspects 
of its execution.  While our COM-MTDP model borrows from a theory developed in another 
field, we make several contributions in applying and extending the original theory, most notably 
adding explicit models of communication and system dynamics.  With these extensions, the 
COM-MTDP generalizes other recently developed multiagent decision frameworks, such as 
decentralized POMDPs. 

This paper demonstrates three new types of teamwork analyses made possible by the COM-
MTDP model.  First, we analyze the computational complexity of teamwork within subclasses of 
problem domains.  For instance, some researchers have advocated teamwork without 
communication.  We use the COM-MTDP model to show that, in general, the problem of 
constructing optimal teams without communication is NEXP-complete, but allowing free 
communication reduces the problem to be PSPACE-complete.  This paper presents a breakdown 
of the complexity of optimal teamwork over problem domains classified along the dimensions of 
observability and communication cost. 

Second, the COM-MTDP model provides a powerful tool for comparing the optimality of 
different coordination prescriptions across classes of domains.  Indeed, we illustrate that we can 
encode existing team coordination strategies by within a COM-MTDP for evaluation.  For our 
analysis, we selected two joint intentions-based approaches from the literature:  one using the 
approach realized within GRATE* and the joint responsibility model of Jennings, and another 
based on STEAM. Through this encoding, we derive the conditions of optimality for these 
coordination strategies, and the complexity of the decision problems addressed by these 
coordination strategies. Furthermore, we also derive a novel coordination algorithm that 
outperforms these existing coordination strategies in optimality, though not in efficiency.  The 
end result is a well-grounded characterization of the complexity-optimality tradeoff among 
various means of team coordination. 

Third, we can use the COM-MTDP model to empirically analyze a specific domain of 
interest.  We have implemented reusable, domain-independent algorithms that allow one to 
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evaluate the optimality of different prescriptive policies within a problem domain represented as 
a COM-MTDP. We apply these algorithms in an example domain to empirically evaluate the 
aforementioned coordination strategies, characterizing the optimality of each strategy as a 
function of the properties of the underlying domain.  For instance, Jennings reports experimental 
results indicating that his joint responsibility teamwork model leads to lower waste of community 
effort than competing methods of accomplishing teamwork.  With our COM-MTDP model, we 
were able to demonstrate the benefits of Jennings’ approach under many configurations of our 
example domain.  However, in precisely characterizing the types of domains that showed such 
benefits, we also identified domains where these competing methods may actually perform better.  
In addition, we can use our COM-MTDP model to re-create and explain previous work that noted 
an instance of suboptimality in a STEAM-based, real-world implementation.  While this previous 
work treated that suboptimality as anomalous, our COM-MTDP re-evaluation of the domain 
demonstrated that the observed suboptimality was a symptom of STEAM’s general propensity 
towards extraneous communication in a significant range of domain types.  Both the algorithms 
and the example domain model are available for public use in an online appendix (http: 
//www.isi.edu/teamcore/COM-MTDP/). 

 

Figure 17: Helicopter scenario used as example domain for COM-MTDPs. 



 

 

 

33

7. Technology Transfer 
 
In addition to making the Travel Elves technology generally available, we are also looking into 
ways to transfer our COM-MTDP technology into other arenas. 
 

7.1 Psychological Operations 
 
In work being conducted on a subcontract through the Institute for Defense Analyses to the 
Psychological Operations (Psyops) branch of Special Forces, we are looking at using the COM-
MTDP model to represent and reason about human societies.  The goal is to use agents to 
represent various individuals or subpopulations (and the relationships among them). We then use 
the COM-MTDP communication policies to represent message campaigns. With such a mapping, 
we can use our general-purpose COM-MTDP policy evaluation algorithms to measure the 
potential effectiveness of candidate message campaigns and provide valuable feedback to human 
Psyop analysts. 
 

7.2 Disaster Rescue 
 
We are also looking into the use of the COM-MTDP framework for analyzing the coordination of 
rescue personnel responding to an urban disaster.  We again use agents to represent the personnel 
(e.g., fire trucks, policemen, ambulances) and the policy evaluation algorithms to measure the 
effectiveness of candidate coordination strategies.  We can also potentially develop new 
algorithms for generating the best possible coordination strategy for a given disaster rescue 
scenario. 
 

8. Personnel 
 

• Milind Tambe (PI)  
• Wei-Min Shen (Co-PI)  
• David V. Pynadath (Research Scientist)  
• Paul Scerri (Research Scientist)  

9. Publications 
[1]  Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh, David V. 

Pynadath, Thomas A. Russ, and Milind Tambe. Electric Elves:  Applying agent technology 
to support human organizations. To appear in Proceedings of the Innovative Applications of 
Artificial Intelligence Conference, 2001. 

[2]  Gal Kaminka, David V. Pynadath, and Milind Tambe. Monitoring deployed agent teams. In 
Proceedings of the International Conference on Autonomous Agents, pages 308–315, 2001. 

[3]  Gal Kaminka, David V. Pynadath, and Milind Tambe. Monitoring teams by overhearing:  A 



 

 

 

34

multi-agent plan-recognition approach. Journal of Artificial Intelligence Research, page To 
appear, 2002. 

[4]  David V. Pynadath, Paul Scerri, and Milind Tambe. MDPs for adjustable autonomy in real-
world multi-agent environments. In Proceedings of the AAAI Spring Symposium on Game 
Theoretic and Decision Theoretic Agents, pages pp.  107–116, 2001. 

[5]  David V. Pynadath and Milind Tambe. Electric Elves:  Adjustable autonomy in real-world 
multi-agent environments. In Kerstin Dautenhahn, Alan Bond, Dolores Canamero, and 
Bruce Edmonds, editors, Socially Intelligent Agents - Creating Relationships with 
Computers and Robots. 2001. 

[6]  David V. Pynadath and Milind Tambe. Revisiting Asimov’s first law:  A response to the 
call to arms. In Proceedings of the IJCAI-01 Workshop on Autonomy, Delegation, and 
Control:  Interacting with Autonomous Agents, 2001. 

[7]  David V. Pynadath and Milind Tambe. An automated teamwork infrastructure for 
heterogeneous software agents and humans. Journal of Autonomous Agents and Multi-Agent 
Systems, Special Issue on Infrastructure and Requirements for Building Research Grade 
Multi-Agent Systems, page to appear, 2002. 

[8]  David V. Pynadath and Milind Tambe. The communicative multiagent team decision 
problem:  Analyzing teamwork theories and models. Journal of Artificial Intelligence 
Research, page to appear, 2002. 

[9]  David V. Pynadath and Milind Tambe. Multiagent teamwork:  Analyzing the optimality and 
complexity of key theories and models. In Proceedings of the International Joint Conference 
on Autonomous Agents and Multi-Agent Systems, page to appear, 2002. 

[10]  David V. Pynadath and Milind Tambe. Team coordination among distributed agents:  
Analyzing key teamwork theories and models. In Proceedings of the AAAI Spring 
Symposium on Intelligent Distributed and Embedded Systems, pages 57–62, 2002. 

[11]  David V. Pynadath, Milind Tambe, Yigal Arens, Hans Chalupsky, Yolanda Gil, Craig 
Knoblock, Haeyoung Lee, Kristina Lerman, Jean Oh, Surya Ramachandran, Paul S. 
Rosenbloom, and Thomas Russ. Electric Elves:  Immersing an agent organization in a 
human organization. In AAAI Fall Symposium on Socially Intelligent Agents:  The Human in 
the Loop, pages 150–154, 2000. 

[12]  David V. Pynadath, Milind Tambe, and Nicolas Chauvat. Rapid integration and 
coordination of heterogeneous, distributed agents for collaborative enterprises. In 
Proceedings of the DARPA-JFACC Symposium on Advances in Enterprise Control, pages 
171–176, 1999. 

[13]  David V. Pynadath, Milind Tambe, Nicolas Chauvat, and Lawrence Cavedon. Toward 
team-oriented programming. In Proceedings of the Agents, Theories, Architectures and 
Languages (ATAL’99) Workshop (to be published in Springer Verlag "Intelligent Agents 
V"), pages 77–91, 1999. 

[14]  David V. Pynadath, Milind Tambe, Nicolas Chauvat, and Lawrence Cavedon. Toward 
team-oriented programming. In Nicholas R. Jennings and Yves Lespérance, editors, 
Intelligent Agents VI:  Agent Theories, Architectures and Languages, pages 233–247. 
Springer-Verlag, 1999. 

[15]  Paul Scerri, David V. Pynadath, and Milind Tambe. Adjustable autonomy in real-world 
multi-agent environments. In Proceedings of the Conference on Autonomous Agents, pages 
300–307, 2001. 

[16]  Paul Scerri, David V. Pynadath, and Milind Tambe. Why the elf acted autonomously:  
Towards a theory of adjustable autonomy. In Proceedings of the International Joint 



 

 

 

35

Conference on Autonomous Agents and Multi-Agent Systems, page To appear, 2002. 
[17]  Milind Tambe and David V. Pynadath. Towards heterogeneous agent teams. In Vladimir 

Marik and Olga Stepankova, editors, Multi-Agent Systems and Applications, ACAI-01 
Proceedings. 2001. 

[18]  Milind Tambe, David V. Pynadath, and Nicolas Chauvat. Building dynamic agent 
organizations in cyberspace. IEEE Internet Computing, 4(2), March/April 2000. 

[19]  Milind Tambe, David V. Pynadath, Nicolas Chauvat, Abhimanyu Das, and Gal A. 
Kaminka. Adaptive agent integration architectures for heterogeneous team members. In 
Proceedings of the International Conference on MultiAgent Systems, pages 301–308, 2000. 

[20]  Milind Tambe, Wei-Min Shen, Maja Mataric, David V. Pynadath, Dani Goldberg, 
Pragnesh Jay Modi, Zhun Qiu, and Behnam Salemi. Teamwork in cyberspace:  Using 
TEAMCORE to make agents team-ready. In Proceedings of the AAAI Spring Symposium on 
Agents in Cyberspace, pages 136–141, 1999. 

 


